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Abstract   

The classical full-waveform inversion is a method for 
obtaining detailed velocity models of the subsurface, 
formulated as an inverse problem, in which modeling and 
adjoint operators use the two-way wave equation. Solving 
the wave equation with the two-way propagator is 
computationally demanding when compared to the less 
accurate one-way propagator. However, the range of 
validity of the one-way wave equation is quite reasonable 
for most of the geological environments in which 
exploration has been carried out. For these situations, we 
propose to perform full-waveform inversion based on the 
first-order Born approximation, using the one-way 
propagator which promises to be less computationally 
intensive than the classical FWI. Our approach includes 
defining the objective function by cross-correlation to 
mitigate the impacts that cycle-skipping and amplitude 
differences have on the solution, and improving the 
gradient information by deconvolving and integrating the 
back-propagated residuals to accelerate convergence. 

Introduction 

In the last years, research on velocity model definition has 
shifted from ray to wave methods. More recently, 
increasing interest has been put on full-waveform 
inversion (FWI), especially after the impressive 3D real 
data results obtained by Sirgue et al. (2009). 
Nevertheless, fundamental issues like data 
incompleteness and initial velocity-model accuracy, which 
impact the convergence speed, are still open questions. 
To address them, different strategies (Boonyasiriwat et 
al., 2009) and objective functions (Luo and Schuster, 
1991) have been proposed.  

Classical FWI in 3D is becoming feasible pushed by more 
efficient two-way propagators as well as decreasing cost 
of computer clusters. Despite these factors, FWI is still an 
expensive process and its routine use is far from being a 
reality. For some geological scenarios, where steep 
propagation angles in laterally varying media and turning 
waves are not carriers of significant information, using the 
cheaper one-way propagators (OWP) produces accurate, 
high quality images. In these cases, one-way propagators 
can be used to perform FWI. Alternatively, if steep 
propagation angles carry important information, OWP with 
meshes conforming to the direction of turning-wave 
propagation can be used (Shragge, 2007). 

Our inversion scheme uses the cross-correlation objective 
function, similar to the wave-equation traveltime inversion 
of Luo and Schuster (1991). This objective function is less 
sensitive to cycle-skipping and amplitude differences 
between observed and one-way modeled data. Two 
different cross-correlation objective functions are used: a 
trace/trace correlation and a trace/trace correlation in a 
running window. An important advantage of this approach 
is that it allows us to simultaneously invert for all the 
wavenumbers present in data without the need of a multi-
scaling strategy.  

It is desirable that the gradient of the objective function 
has a layered structure, mimicking velocity distribution, to 
accelerate convergence. Ma et al. (2010) showed that 
using an image-guided gradient allows fast convergence 
to an adequate velocity model. Instead of using structural 
properties of the gradient, here we compute the pseudo-
impedance correspondence of the gradient. For that, we 
deconvolve the wavelet present in the back-propagated 
residuals. The deconvolution assumes that illumination is 
perfect. Ideally, lest-squares migration should be used for 
this task. The deconvolved back-propagated residuals are 
subsequently integrated to generate a blocky 
representation of the gradient. 

Next, we review FWI and describe our methodology. In 
the examples, we show the validity of our approach using 
simple synthetic data and field data from the Santos 
Basin.  

Method 

The theoretical background of FWI can be found in 
Tarantola (1984). FWI is an optimization problem in which 
waveform differences between the observed data (d0) and 
the modeled data (d) are minimized. In out approach, data 
d are computed using Born modeling, which, in the 
frequency domain, reads 

, (1)
 

where ω is the radial frequency, xs, xr, and x are shot, 
receiver, and model position vectors, respectively. In the 
present case, Gs is the source one-way Green´s function 
and Gr is the receiver one-way Green ś function 
computed using the velocity of the current FWI iteration. 
The reflectivity r is obtained by deconvolving the wavelet 
(explained in the sequence) in the image of the current 
iteration.  

Here, we aim at minimizing, in the l2 sense, the traveltime 
differences between the observed and the modeled data, 
following the lines of Luo and Schuster (1991). The 
traveltime differences are determined by measuring the 
lag ∆τ of the maximum cross-correlation φ 
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.        (2)
 

The mathematical representation of the problem does not 
change; irrespective we use the windowed trace/trace 
correlation.   

The objective function J(v) is 

.                        (3)
 

For the velocity update, we need to compute the gradient 
of (3) with respect to the velocity, using 

,                                    (4)
 

which, after some algebra, reads for one frequency 

,(5) 

where and the asterisk 
represents complex conjugate. The final gradient is 
obtained after summing over all the frequencies. Notice 
that the gradient corresponds to the migration of the 
observed data weighted by the lag of the maximum cross-
correlation. If this lag is zero, observed data and modeled 
data perfectly match, so the gradient is zero and no 
velocity update is required. 

As the back-projected residuals strongly resembles 
reflectivity since it is basically migration of the observed 
data after weighting, we transform the reflectivity-like 
information of the back-projected residuals into a pseudo-
impedance-like one by deconvolving the remaining 
wavelet and integrating (Rosa, 2010) to accelerate 
convergence. The reasoning is that velocity is more 
related to impedance than to band-limited reflectivity. This 
procedure can also be applied when FWI is performed 
with the two-way wave equation. Ma et al. (2010) 
compute a blocky gradient based on its structural 
information. They achieve faster convergence with this 
blocky gradient than that obtained with the conventional 
gradient. 

Deconvolving and integrating the back-projected residuals 
generates important low-wavenumber information that, in 
general, is absent in the observed data. This procedure 
assumes complete illumination of the reflectors. When 
this is not the case, a least-squares migration scheme 
should be applied prior to integration. For now, we are not 
considering the effect of density on impedance. The 
pseudo-impedance-like transformation is illustrated in 1D 
in Figure 1. The original impedance model is represented 
by three layers of constant impedance. The input seismic 
trace (trace 1) is computed by convolving a Ricker 
wavelet with the reflectivity model derived from the 
impedance model. After deconvolution (trace 2) it is 
integrated (trace 3) recovering the impedance 
information. Trace 4 shows the result of applying 
integration without deconvolving trace 1.  

In 2D or 3D, especially when applying on real data, trace-
to-trace differences introduce strong lateral variations of 
the low-vertical-wavenumber component of the pseudo-
impedance-like gradient. These lateral variations are 
corrected by applying trapezoidal filters that act as 

bandpass filters. This issue will be illustrated in the 
Results section. 

 
Figure 1 – Pseudo-impedance generation. Trace 1 is the input, trace 2 is 
the deconv olution of  trace 1, trace 3 is the integration of  trace 2 emulating 
the impedance, and trace 4 is the integration of trace 1. 

Examples 

To illustrate the one-way FWI strategy, we use the 
sediment portion of the Sigsbee2a model (Paffenholz et 
al., 2002). We use Born modeling to synthesize 67 shots 
with 300 ft shot spacing, maximum offset 45,000 ft, and 
frequency range of 4-60 Hz. The reflectivity model was 
obtained from the original velocity (Figure 2a). By doing 
so, data and modeling/migration algorithms used the 
inversion scheme are consistent.  

The initial velocity model is the migration velocity of 
Sigsbee2a, which is basically a 1D velocity function hung 
at the water bottom (Figure 2b). Initially, we used the 
trace/trace correlation objective function in the inversion. 
Data residuals were median-smoothed along the time, 
offset, and shoot axes. The gradient was median-
smoothed as well. The corresponding final velocity model 
(Figure 3) converged after 4 iterations and highly 
resembles the original velocity.  

 
(a)

 

 
                                                        (b) 

Figure 2– The original v elocity  model used to model data (a) and the initial 
v elocity  model input to FWI (b). 
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Then, this inverted velocity model is used as input for a 
new run of inversion, but now using the windowed 
trace/trace correlation. By doing this, we expect to invert 
for finer details of the velocity model. In fact, the objective 
function decreased 4.75% and only one iteration was 
accepted, not adding much of the expected details to the 
velocity model. 
 

 
Figure 3– The v elocity  model inv erted with trace/trace correlation objectiv e 
f unction input to a new run of  FWI with windowed trace/trace correlation 
objectiv e f unction. 

Results 

We applied the methodology on the shallow portion of a 
marine dataset from the Santos Basin, Brazil. We 
selected the nearest cable to source, the maximum offset 
is 8225 m, and the frequency range is 4-40 Hz. The initial 
velocity model (Figure 4a) is taken from a 3D interval 
velocity cube for PSDM. After 12 non-linear iterations, 
inversion stopped without decreasing the objective 
function and we obtained the optimized velocity model of 
Figure 4b.  

 
(a) 

 
(b) 

Figure 4– The initial  v elocity  model deriv ed f or PSDM (a) and the f inal 
v elocity  model after FWI (b). 
 

The deconvolution of the residual wavelet is a 1D process 
with no constraint on the spatial variation of the wavelet. 
For the back-projected residuals, the spatial variation of 
the wavelet is caused not only by variations of the source 
from shot-to-shot (here we use only one source function), 

but also by high-frequency variations of the 
crosscorrelation lags. The variation of the correlation lags 
can be mitigated by using a strong smoothing at the 
expense of lack of resolution of the objective function. 
Otherwise, when submitting the back-propagated 
residuals (Figure 5a) to the pseudo-impedance 
transformation by integration, an inaccurate DC-
component occurs with high-spatial variation after 
integration (Figure 5b). This inaccuracy in the DC 
component is suppressed by applying trapezoidal filters, 
which act as bandpass filters (Figure 5c).  

 
(a) 

 
(b) 

 
(c) 

Figure 5 – Computation of  the pseudo-impedance-like back-propagated 
residuals: a) back-propagated residuals; b) integration of  (a); and c) 
trapezoidal f iltering of (b). 

The evolution of the objective function is presented in 
Figure 6. 
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Figure 6– Ev olution of the objectiv e f unction in the case of real data. 
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For the Born modeling we need an intermediate migrated 
image with the current velocity. Similar to the stack-power 
objective function of Chavent and Jacewitz (1995), we 
compute the RMS amplitude of this image as a measure 
of focusing. For now, we are not using this measure as a 
metric in the inverse problem. Figure 7 shows that this 
RMS amplitude overall increases about 10%, indicating 
that velocity updates produce a better focused image 
throughout the iterations. This is can be an indication that 
this objective function could be used in conjunction to the 
crosscorrelation objective function in the future. 

4
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Figure 7 – RMS amplitude of the migrated images per iteration.  

Migration with the velocity models of Figure 4 produced 
the images of Figure 8. The stacked section (Figure 8a) 
does not change significantly, whether we migrate with 
the original velocity (Figure 4a) or with the optimized 
velocity (Figure 4b). Angle gathers were computed from -
40o – 0o. Figures 6b and 6c show angle gathers from 
spatial coordinate 27,000 and 30,000, and from depth 
2,300 m to 3,000 m. The ones resulting from migration 
with the optimized velocity (Figure 8c) are a bit flatter than 
that computed with the original velocity (Figure 8b). Of 
course, 3D effects like cable feathering and out of plane 
events must have some impact on the results. 

Conclusions 

We showed that under relatively simple geology one-way 
propagator can be used to perform FWI at a low 
computational cost. Compared to the classical FWI, the 
cost is decreased by using a cheaper propagator and by 
accelerating convergence using the pseudo-impedance-
like gradient. One interesting feature of the strategy is that 
the cross-correlation objective function allows for 
simultaneously inverting of the full bandwidth. For now, it 
is extremely important to have an adequate phase 
treatment of the input data, which must be zero-phase. 
Relaxing this restriction is part of future work. To 
determine the range of validity of our strategy demands 
more testing in geologically complex environments. 
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Figure 8 – Real data example: a) Image migrated with the origina l v elocity 
f or PSDM, b) Angle gathers computed with the original v elocity , and c) 
Angle gathers computed with the optimized v elocity . Ref lection angles 
increase f rom right to lef t within the gathers. 


	Abstract
	The classical full-waveform inversion is a method for obtaining detailed velocity models of the subsurface, formulated as an inverse problem, in which modeling and adjoint operators use the two-way wave equation. Solving the wave equation with the two...
	Introduction
	Our inversion scheme uses the cross-correlation objective function, similar to the wave-equation traveltime inversion of Luo and Schuster (1991). This objective function is less sensitive to cycle-skipping and amplitude differences between observed an...
	It is desirable that the gradient of the objective function has a layered structure, mimicking velocity distribution, to accelerate convergence. Ma et al. (2010) showed that using an image-guided gradient allows fast convergence to an adequate velocit...
	Method
	Examples
	Conclusions
	Acknowledgments

